Effect of β-mannanase addition on dry matter intake, yield, composition, and somatic cell count in milk of Holstein-Friesian cows
PDF (Español (España))
XML (Español (España))

Keywords

?-mananasa
vacas en transición
consumo de alimento
producción de leche
calidad de leche
células somáticas
materia seca
nitrógeno ureico
maíz
periodos de parto
enzimas
gestación
lactancia
tratamientos ?-mannanase
transition cows
feed intake
milk yield
milk quality
somatic cells
dry material
urea nitrogen
corn
partum periods
enzymes
gestation
lactation
treatments

How to Cite

López-Ordaz, R., Sánchez-López, F., Sánchez del Real, C., Lara-Bueno, A., López-Ordaz, R., & Ruiz-Flores, A. (2020). Effect of β-mannanase addition on dry matter intake, yield, composition, and somatic cell count in milk of Holstein-Friesian cows. Nova Scientia, 12(25). https://doi.org/10.21640/ns.v12i25.2334

Abstract

Introduction: The objective of the study was to evaluate the effect of exogenous β-mannanase addition on dry matter intake (DMI) in the pre- and postpartum periods, milk yield (MY) and milk composition, urea nitrogen content (NU) and somatic cell count (SCC) in Holstein-Friesian cows.

Method: Thirty cows were used in the study (body weight (BW)=781±83 kg; of more than two lactations) of approximately 260 d of gestation. The cows were stratified by BW and their previous MY and randomly assigned to one of two treatments: 1) Total mixed ration (corn-silage of corn), Control; and 2) Control+0.10% of β-mannanase (CTCZYME; Seoul, Korea).

Results: In the prepartum period, DMI was similar (14.44±0.70 vs 15.66±0.70 kg d-1; p>0.05) between treatments. In the postpartum period, there were no differences (p>0.05) in DMI between the Control and the group with enzymes. On the contrary, MY was greater (42.66±1.31 vs 38.24±1.31 kg cow-1 d-1; p<0.05) in supplemented than in Control cows. The addition of β-mannanase into cow diets did not influence (p>0.05) milk composition; however, supplemented cows showed greater (p<0.05) feed utilization efficiency than Control cows. The SCC was lower (152,600±294.1 vs 1,112,6400±294.1 coliform cells per mL; p<0.05) in milk of cows that received β-mannanase.

Conclusion: Addition of β-mannanase in corn-corn silage diets increased milk yield and decreased the somatic cell content in milk, but it did not influence dry matter intake in both pre- and postpartum periods, nor did it influence the urea nitrogen content in milk, and postpartum milk composition.
https://doi.org/10.21640/ns.v12i25.2334
PDF (Español (España))
XML (Español (España))

References

Adesogan, A. T., Ma, Z. X., Romero, J. J., and Arriola, K. G. (2014). Ruminant nutrition symposium: Improving cell wall digestion and animal performance with fibrolytic enzymes. Journal of Animal Science, 92, 1317-1330. DOI: 10.2527/jas.2013-7273.

AOAC. (2006). Association of Official Analytical Chemists. Official methods of analysis. 18th. (Ed.). Association of Official Analytical Chemists Press. Gaithersburg, MD. AOAC International.

Arriola, K. G., Oliveira, A. S., Ma, X. Z., Lean, I. J., Giurcanu, M. C., and Adesogan, A. T. (2017). A meta-analysis on the effect of dietary application of exogenous fibrolytic enzymes on the performance of dairy cows. Journal of Dairy Science, 100, 4513-4527. DOI: https://doi.org/10.3168/ jds.2016-12103.

Arriola, K. G., Kim, S. C., Staples, C. R., and Adesogan, A. J. (2011). Effect of fibrolytic enzymes application to low- and high-concentrate diet in the performance of lactating dairy cattle. Journal of Dairy Science, 94, 832-841. DOI: https://doi.org/10.3168/jds.2010-3424

Beauchemin, K. A., and Holtshausen, L. (2010). Developments in enzyme usage in ruminants. Pages 206-230 in Enzymes in Farm Animal Nutrition. 2nd ed. CAB Int., Wallingford, UK.

Beauchemin, K. A., Rode, L. M., and Sewalt V. J. (1995). Fibrolytic enzymes increase fiber digestibility and growth rate of steers fed dry forages. Canadian Journal of Animal Science, 75:641–644. DOI: https://doi.org/10.4141/ cjas95-096.

Bradley, A., and Green, M. (2005). Use and interpretation of somatic cell count data in dairy cows. In Practice, 27(6), 310-315. DOI:10.1136/inpract.27.6.310.

Bortoluzzi, C., Scapini, L. B., Ribeiro, M. V., Pivetta, M. R., Buzim, R., and Fernandes, J. I. M. (2019). Effects of β-mannanase supplementation on the intestinal microbiota composition of broiler chickens challenged with a coccidiosis vaccine. Livestock Science, 228, 187-197. DOI: https://doi.org/10.1016/j.livsci.2019.09.001

Dean, D. B., Staples, C. R., Littell, R. C., Kim, S., and Adesogan, A. T. (2013). Effect of method of adding a fibrolytic enzyme to dairy cow diets on feed intake digestibility, milk production, ruminal fermentation, and blood metabolites. Animal Nutrition and Feed Technology, 13, 337–353.

Durr, J. W., Cue, R. I., Monardes, H. G., Moro-Mendez, J., and Wade, K. M. (2008). Milk losses associated with somatic cell counts per breed, parity and stage of lactation in Canadian dairy cattle. Livestock Science, 117(2-3), 225-232. DOI: 10.1016/j.livsci.2007.12.004.

Edmonson, A. J., Lean, I. J., Weaver, L. D., Farver, T. and Webster, G.(1989). A body condition scoring chart for Holstein dairy cows. Journal of Dairy Science, 72, 68–78. DOI: http://dx.doi.org/10.3168/jds.S0022- 0302(89)79081-0.

FASS. (2010). Guide care and use of agricultural animals in research and technology. 3rd Ed. Federation Animal Society. Champaign, IL, USA.

Feng, P., Hunt, C. W., Pritchard, G. T., and Julien, W. E. (1996). Effect of enzyme preparations on in situ and in vitro degradation and in vivo digestive characteristics of mature cool-season grass forage in beef steers. Journal Animal Science, 74,1349-1357. DOI: 10.2527/1996.7461349x.

Gaines, W. L., and Davidson, F. A. (1923). Relation between percentage fat content and yield of milk. Agricultural Experiment Station, Bulletin 245. University of Illinois. USA. p. 594.

Galyean, M., and May, T. (1996). Laboratory procedures in animal nutrition research. (15th Ed.). New Mexico State University. Las Cruces, NM.

García, E. (2005). Modificaciones al sistema de clasificación climática de Köppen. Instituto de Geografía. UNAM. México. 5ta. Edición p. 16-20. http://www.igeograf.unam.mx/sigg/utilidades/docs/pdfs/publicaciones/geo_siglo21/serie_lib/modific_al_sis.pdf. Accesado en marzo de 2018.

Goering, H. K., and Van Soest, P. J. (1970). Forage fiber analyses (apparatus, reagents, procedures, and some applications) Agricultural handbook no. 379. ARS-USDA, Washington, DC, USA. ARS-USDA Press Inc.

Kebreab, E., Tewoldebrhan, T., Appuhamy, R., Niu, M., Seo, S., Jeong, S., Lee, J. J. (2016). Supplementation of β-mannanase (ctczyme) to lactating dairy cattle diets improves feed conversion efficiency and somatic cell count. Journal Animal Science, 94(5), 658–659. DOI: https://doi.org/10.2527/jam2016-1362

Kong, C., Lee, J. H., and Adeola, O. (2011). Supplementation of β-mannanase to starter and grower diets for broilers. Canadian Journal of Animal Science, 91(3), 389-397. DOI:10.4141/CJAS10066.

Lee, J. J., Seo, J., Jung, J. K., Lee, J., Lee, J. H., and Seo, S. (2014). Effects of β-mannanase supplementation on growth performance, nutrient digestibility, and nitrogen utilization of Korean native goat (Capra hircus coreanae). Livestock Science, 169, 83-87. DOI: http://dx.doi.org/10.1016/j.livsci.2014.08.018

Mendoza, G. D., Loera-Corral, O., Plata-Pérez, F. X., Hernández-García, P. A., and Ramírez-Mella, M. (2014). Considerations on the use of exogenous fibrolytic enzymes to improve forage utilization. The Scientific World Journal, (247437), 1-9- DOI: http://dx.doi.org/10.1155/2014/247437

Mok, C. H., Lee, J. H., and Kim, B. G. (2013). Effects of exogenous phytase and p-mannanase on ileal and total tract digestibility of energy and nutrient in palm kernel expeller-containing diets fed to growing pigs. Animal Feed Science and Technology, 186(3-4), 209-213, DOI:10.1016/j.anifeedsci.2013.10.008.

Moreira, L. R. S., and Filho, E. X. F. (2008). An overview of mannan structure and mannan-degrading enzyme systems. Applied Microbiology and Biotechnology, 79(2), 165-178, DOI:10.1007/s00253-008-1423-4.

Nutrient Requirements of Dairy Cattle (NRC). (2001). 7th ed. National Academies Press, Washington, DC.

Nyman, A. K., Emanuelson, U., and Waller, K. P. (2016). Diagnostic test performance of somatic cell count, lactate dehydrogenase, and N-acetyl-beta-D-glucosaminidase for detecting dairy cows with intramammary infection. Journal of Dairy Science, 99(2), 1440-1448, DOI:10.3168/jds.2015-9808.

Owens, F. N., Secrist, D. S., Hill, W. J., Gill, D. R. (1997). The effect of grain source and grain processing on performance of feedlot cattle: A review. J. Anim. Sci., 75(3), 868-879. DOI: 10.2527/1997.753868x.

Peters, A., Meyer, U., and Dänicke, S. (2015). Effect of exogenous fibrolytic enzymes on performance and blood profile in early and mid-lactation Holstein cows. Animal Nutrition, 1(3), 229-238. DOI: http://dx.doi.org/10.1016/j.aninu.2015.09.001

Ponce, C. I. (2013). Efecto de Sacharomyces cerevisiae en la producción y calidad de la leche de vacas Holstein-Friesian en condiciones de estrés calórico. Tesis de Maestría en Ciencias en Innovación Ganadera. Posgrado en Producción Animal. Universidad Autónoma Chapingo. 58 p.

Overton, R. (2003). Managing the metabolism of the transition cows. Proceedings of the 6th Western dairy Science Management Conference. March 12-14, 2003. Reno, NV.

Qiao, Y., Zhu, X., Zhai, L., Payne, R., and Li, T. (2018). Dietary B-mannanase supplementation improved growth and health of nursery pigs fed high soybean meal diet. Journal of Animal Science, 96, suppl., 3, 304-305.

Rode, L. M., Yang, W. Z., and Beauchemin, K. A. (1999). Fibrolytic enzyme supplements for dairy cows in early lactation. Journal of Dairy Science, 82(10), 2121–2126. DOI: 10.3168/jds.S0022-0302(99)75455-X.

Romero, J. J., Macias, E. G., Ma, Z. X., Martins, R. M., Staples, C. R., Beauchemin, K. A., and Adesogan, A. T. (2016). Improving the performance of dairy cattle with a xylanase-rich exogenous enzyme preparation. Journal of Dairy Science, 99, 3486-3496. DOI: https://doi.org/10.3168/jds.2015-10082

Roque, B. M., Reyes, G. C., Tewoldebrhan, T. A., Apphuamy, J. A. D. R.N., Lee, J.J., Seo, S., and Kebreab, E. (2019). Exogenous β-mannanase supplementation improved immunological and metabolic responses in lactating dairy cows. Journal of Dairy Science, 102, 4198-4204. DOI: https://doi.org/10.3168/jds.2018-15568

SAS Institute Inc. (2013). SAS/STAT 9.3 User’s Guide. SAS Institute. Cary, N. C. USA. 5180 p.

Seo, J., Park, J., Lee, J., Lee, J. H., Lee, J. J., Kam, D. K., and Seo, S. (2016). Enhancement of daily gain and feed efficiency of growing heifers by dietary supplementation of β-mannanase in Hanwoo (Bos taurus coreanae). Livestock Science, 188, 21-24. DOI: 10.1016/j.livsci.2016.04.00.

Tewoldebrhan, T. A., Appuhamy, J., Lee, J. J., Niu, M., Seo, S., Jeong, S., and Kebreab, E. (2017). Exogenous beta-mannanase improves feed conversion efficiency and reduces somatic cell count in dairy cattle. Journal of Dairy Science, 100(1), 244-252. DOI: 10.3168/jds.2016-11017.

Tirado-González, D. N., Miranda-Romero, L. A., Ruíz-Flores, A., Medina-Cuéllar, S. E., Ramírez-Valverde, R., and Tirado-Estrada, G. (2018). Meta-analysis: Effects of exogenous fibrolytic enzymes in ruminant diets. Journal Apply of Animal Research, 46, 771-783. DOI: https://doi.org/10.1080/09712119.2017.1399135

Van Soest, P. J. (1994). Nutritional Ecology of the Ruminant. 2nd Edition, Cornell University Press, Ithaca. 476 p.

Wu, G., Bryant, M. M., Voitle, R. A., and Roland Sr, D. A. (2005). Effects of β-mannanase in corn-soy diets on commercial leghorns in second-cycle hens. Poultry Science, 84(6), 894-897. DOI:10.1093/ps/84.6.894.

Yang, W. Z., K. A. Beauchemin, and Rode, L. M. (1999). Effects of an enzyme feed additive on extent of digestion and milk pro- duction of lactating dairy cows. Journal of Dairy Science, 82, 391-403. DOI: 10.3168/jds.S0022-0302(99)75245-8.

Yang, W. Z., Beauchemin K. A., and Rode, L. M. (2000). A comparison of methods of adding fibrolytic enzymes to lactating cow diets. Journal of Dairy Science, 83, 2512–2520. DOI: https://doi.org/10.3168/jds.S0022 -0302(00)75143-5.

Zilio, E. M. C., Del Valle, T. A., Ghizzi, L. G., Takiya, C. S., Dias, M. S. S. Nunes, A. T., Silva, G. G., and Rennó, F. P. (2019). Effects of exogenous fibrolytic and amylolytic enzymes on ruminal fermentation and performance of mid-lactation dairy cows. Journal of Dairy Science, 102, 4179–4189. DOI: https://doi.org/10.3168/jds.2018-14949

Zinn, R.A., and Salinas J. (1999). Influence of fibrozyme on digestive function and growth performance of feedlot steers fed a 78% concentrate growing diet. Pages 313–319 in Proc. Alltech’s Fifteenth Annual Symposium, Nottingham University Press, Loughborough, UK.

Creative Commons License

This work is licensed under a Creative Commons Attribution-NonCommercial 4.0 International License.

Copyright (c) 2020 Nova Scientia